急性肾损害引起的原因:脓毒症急性肾损害肾脏细胞凋亡通路的研究进展

old
中国现代医生
2020年05月15日 11:19

张伟++孙仁华

[摘要] 脓毒症在重症监护病房(ICU)具有较高的发病率和逝世率,也是ICU患者急性肾损害(Acute Kidney Injury AKI)发作的首要病因。迄今为止,脓毒症肾功用损害尚无有用的办法能够防治,首要是脓毒症肾损害发病进程杂乱,且很多要素参加其间,包含肾脏血流动力学改动、炎症介质滋润、肾血管内皮细胞功用紊乱、肾脏细胞凋亡。其间,肾脏细胞凋亡机制,特别是肾小管上皮细胞凋亡可能在脓毒症急性肾损害中起要害效果。因而,本文首要就脓毒症致AKI肾脏细胞凋亡机制通路发展做一总述,希望为临床医治脓毒症供给必定协助。

[要害词] 脓毒症;急性肾损害;细胞凋亡;线粒体途径;逝世受体途径;内质网途径

[中图分类号] R459.7 [文献标识码] A [文章编号] 1673-9701(2017)02-0165-04

Research progress of renal cell apoptosis pathway in sepsis acute kidney injury

ZHANG Wei1 SUN Renhua2 HU Bangchuan2

1.The Second Clinical Medical College of Zhejiang Chinese Medicine University,Hangzhou 310053, China; 2.Department of Intensive Care Unit, Zhejiang Province Peoples Hospital, Hangzhou 310014,China

[Abstract] Sepsis has high morbidity and mortality in intensive care unit(ICU), and it is also the primary cause of acute kidney injury(AKI) in ICU patients. So far, there is no effective method to prevent and treat sepsis induced renal injury, because the pathogenesis of sepsis induced renal injury are complicated and many of the factors involved in it. Such as, renal hemodynamics changes, inflammatory mediator

膿毒症在重症监护病房(intensive care unit,ICU)具有较高的发病率和逝世率[1],肾脏是最易受损器官之一,脓毒症也是ICU患者急性肾损害(acute kidney injury,AKI)发作的首要病因,脓毒症患者一旦兼并AKI可加剧其疾病的演化进程,添加多脏器衰竭及逝世危险[2]。迄今为止,脓毒症肾功用损害尚无有用的办法能够防治,首要是脓毒症肾损害发病进程杂乱,且很多要素参加其间,包含肾脏血流动力学改动、炎症介质滋润、肾血管内皮细胞功用紊乱、肾脏细胞凋亡。其间,肾脏细胞凋亡机制,特别是肾小管上皮细胞凋亡可能在脓毒症急性肾损害中起要害效果[3]。

1 脓毒症急性肾损害发病机制

脓毒症指感染导致宿主机体发作失控反响引起的器官功用妨碍[4]。肾脏是脓毒症脏器劳累靶器官之一,跟着对脓毒症致AKI发病机制的深入研讨,现在以为脓毒症致AKI发作受多要素影响,包含炎性瀑布样反响直接损害[5];肾内皮细胞损害,微血栓构成[6,7];肾脏血流动力学的改动[5,8,9];免疫功用妨碍[10];肾脏细胞凋亡等。虽然关于脓毒症致AKI机制的研讨不断深入,但脓毒症AKI患者的防备及预后仍不容乐观。脓毒症致AKI是一个连续性的发病进程,在前期以肾血流再散布反常导致的相对灌注缺乏以及能量代谢运用妨碍为主;这以后以肾脏炎症反响和细胞凋亡为首要体现,提示肾脏细胞凋亡可能在脓毒症致AKI中起着要害性效果[11-13]。因而,说明脓毒症肾脏细胞凋亡机制,可能对脓毒症致AKI的防备、靶向性医治及改进预后具有重要意义。

2 肾脏细胞凋亡与脓毒症AKI

细胞凋亡是由基因调控的程序性细胞逝世,生理性的细胞凋亡关于保持安排器官的结构与功用的安稳非常重要,可是,当病理性的有害要素效果于正常宿主细胞,可导致细胞凋亡失调而使得细胞过度凋亡,引起器官功用妨碍和本身免疫性疾病的发作,如脓毒症急性肾损害[10]。既往观念以为肾缺血及炎症因子冲击构成的急性肾小管坏死(acute tubular necrosis, ATN)在脓毒症AKI中起主导效果。可是,近年来很多研讨标明脓毒症肾脏损害首要体现为肾脏细胞凋亡。在脓毒症AKI患者肾活检标本中,Lerolle N等[14]经过光镜调查、TUNEL染色及半胱氨酸天冬酶3(caspase-3)活性检测三种不同的办法证明脓毒症致AKI患者存在广泛的肾小管上皮细胞凋亡。在另一项研讨中,用脓毒症患者的血浆影响体外培育的肾小管上皮细胞和足细胞,可诱导细胞凋亡[15]。可是,脓毒症是经过何种途径引起肾小管上皮细胞凋亡现在没有彻底清晰。Cantaluppi V等[16]提出在脓毒症致AKI中以Fas和Caspase宗族为中心的细胞凋亡调理通路。现在,大都学者以为脓毒症引起肾脏细胞凋亡首要经过两个经典的细胞凋亡途径:线粒体介导细胞呼吸妨碍的内源性途径和逝世受体介导的外源性途径[17]。此外,研讨标明近年来新发现的内质网应激发动细胞凋亡途径也参加脓毒症肾脏细胞凋亡。

3 脓毒症AKI肾脏细胞凋亡通路

3.1线粒体途径与肾脏细胞凋亡

细胞凋亡内源性线粒体途径开始于细胞氧化应激的发作,包含ATP生成削减,活性氧(reactive oxygen species,ROS)生成增多,促进一氧化氮(NO)生成。这些细胞应激产品随Bax/Bcl-2蛋白复合物进入线粒体内,后与其他促凋亡基因促进细胞线粒体通透性添加,线粒体膜通透性变换孔(mitochondrial permeability transition pore,MPTP)敞开,开释细胞素色C,终究经过激活Caspase-3凋亡效应分子,发动细胞凋亡。

Bcl-2宗族蛋白在其间发挥着重要的调理效果,Bcl-2和Bax是该宗族中最具代表性的抗凋亡因子和促凋亡因子,在脓毒症中Bcl-2蛋白基因变异和Bax/Bcl-2表达比率添加[18],细胞应激产品与Bax构成复合物,引起线粒体通透性添加,发动细胞凋亡程序。在促红细胞生成素(EPO)医治脂多糖(LPS)诱导脓毒症致AKI小鼠模型中,脓毒症AKI组肾小管上皮细胞Bax明显性表达添加[19]。Bax经过与线粒体膜上的细胞色素C电压依赖性阴离子通道(voltage-dependent anion channel,VDAC)结合而促进MPTP敞开,诱导细胞凋亡。

坐落线粒体表里膜之间的MPTP是线粒体表里信息沟通的中心纽带,是细胞凋亡的存亡开关[20]。MPTP敞开可致线粒体肿胀、外膜决裂、细胞色素C和凋亡诱导因子开释到胞质,终究导致凋亡的发作。脓毒症时,各种有害要素引起肾脏安排细胞内Ca2+超载、ROS发作添加,促进线粒体膜上的MPTP敞开,诱导细胞凋亡的发作,引起细胞损害、坏死,导致AKI的发作[21-23]。

Caspase-3是调控线粒体细胞凋亡通路的终结者。MPTP的敞开导致促凋亡蛋白如细胞色素C(Cyt-c)从线粒体向细胞质开释,这一进程在细胞凋亡中发挥重要效果。Cytc从线粒体开释进入细胞质,与细胞质中其它两个蛋白Apaf-1和Caspase-9相互效果,发动Caspase活化,激活下流的Caspase-3完结相应底物的剪切,引起细胞凋亡级联反响。选用EPO医治LPS诱导脓毒症致AKI小鼠模型中,EPO经过与促红细胞生成素受体(EPO-R)结合阻断细胞凋亡线粒体通路,下调Bax/Bcl-xl基因表达,削减细胞色素C(Cytc)开释,按捺Caspase-3表达[19],然后下降肾小管上皮细胞凋亡。

此外,线粒体作为细胞的能量代谢中心,生成ATP。在某种程度上,细胞ATP水平是区别细胞凋亡与逝世的标志物[24],脓毒症致AKI中ATP的耗竭,糖原组成激酶3β(GSK3β)活性下降,Bax磷酸化效果增强(0.57±0.03 vs 3.54±0.19,P<0.05),Caspase-3酶表达添加,引起肾脏细胞凋亡[25,26],而细胞ATP的快速康复可阻挠细胞凋亡[27],因而能量代谢在细胞凋亡中起着重要的效果。

因而,线粒体在脓毒症致AKI肾脏细胞凋亡中发挥着要害性效果,是细胞凋亡调控的活动中心。

3.2 逝世受体途径与肾脏细胞凋亡

逝世受体是细胞上的一种跨膜蛋白,细胞外表的逝世受体承受胞外的凋亡信号影响,并对凋亡信号进行传递,进而发动激活细胞内的凋亡机制,导致细胞凋亡。逝世受体均归于肿瘤坏死因子受体(TNFR)超宗族,胞内具有蛋白水解功用的“逝世结构域”(death domain,DD)。DD是逝世受体途径的始动效应区,可传递逝世信号。进一步激活下流的Caspase-8,终究经过激活Caspase-3凋亡效应分子,发动细胞凋亡[17]。

细胞凋亡逝世受体途径发动的要害在于配体与受体的结合激活DD,在脓毒症致AKI中首要的逝世受体/配体组合为Fas/Fas L和肿瘤坏死因子受体-1(TNFR1)/肿瘤坏死因子受体(TNF-α)[28]。体外研讨中已标明,将LPS或脓毒症患者的血浆肾实干涉肾质细胞,可诱导TNF-α/TNFR1基因表达上调,Caspase-3活性添加,细胞凋亡增多[29]。在LPS诱导脓毒症AKI小鼠模型中,已证明TNFR-1基因敲除小鼠相比较未敲除小鼠较少发作肾脏细胞凋亡和炎性细胞滋润。在最近的两项脓毒症血致AKI小鼠研讨中,可见到肾脏细胞凋亡,Fas/FasL和Bax/Bcl-2表达添加[30,31]。在敲除Fas基因的脓毒症致AKI小鼠肾安排中可见FasL溶解,肾小管上皮细胞凋亡削减[32]。Caspase-3是线粒体途径和逝世受体途径的交汇点。在LPS致脓毒症肾损害小鼠模型中,TNF-α基因及Caspase-3表达添加,促进细胞凋亡,运用依达拉奉后,可显着按捺Caspase-3的表达和肾脏细胞凋亡[33]。

3.3内质网应激与肾脏细胞凋亡

脓毒症引起机体的超炎症反响和免疫麻木,导致内质网的改动,发作内质网应激(endoplasmic reticulum stress,ERS),ERS是一条新的细胞凋亡信号传导通路,称之为内质网相关性逝世(ER-associated death,ERAD)途径。在脓毒症中继续的内质网应激将激活促凋亡编码基因CHOP转录以及活化Caspase-12,激活Caspase宗族等下流的凋亡信号分子,然后诱导细胞凋亡。

ERS即内质网腔内过错折叠、未折叠蛋白质集合以及细胞内Ca2+离子平衡紊乱等引起细胞内一系列反响。内质网应激是细胞内一种适应性维护机制,可是继续存在或过强时则终究诱导细胞凋亡,构成安排损害。内质网应激由内质网伴侣分子和内质网應激感触蛋白所介导[34]。ERS伴侣分子表达添加,可进步ERS状态下细胞处理未折叠蛋白或抵挡其他细胞应激的才能,在盲肠结扎穿孔的脓毒症大鼠模型中,肾脏安排内质网伴侣分子糖调理蛋白78(glucose regulated proteins 78,GRP78)基因表达明显添加,提示大鼠脓毒症状态下肾脏安排存在内质网应激[35,36]。

CHOP存在于细胞质内,在内质网应激时被活化而转位至细胞核,是内质网应激相关性细胞凋亡中的重要转录调理因子,它能按捺细胞存活,促进凋亡相关蛋白Bcl-2生成,使得线粒体膜通透性改动,终究诱导细胞凋亡[37]。研讨发现CHOP基因敲除能阻挠内质网应激诱导的细胞凋亡,Esposito V等[38]报导在LPS诱导脓毒症致AKI小鼠模型中,CHOP基因敲除小鼠肾安排淋巴细胞凋亡水平是野生型小鼠的1.7倍,且AKI程度更重。

Caspase-12活化是ERS介導细胞凋亡的要害途径之一,它定坐落内质网外膜,在逝世受体或线粒体凋亡途径中不被活化。Caspase-12被激活,经过激活Caspase-3,导致细胞凋亡。在盲肠结扎穿孔致脓毒症AKI大鼠模型中,CHOP和Caspase-12基因表达添加,提示脓毒症AKI与内质网应激后凋亡途径诱导肾小管上皮细胞凋亡有关[35]。

4 总结与展望

细胞凋亡在脓毒症AKI发病机制中的效果为临床干涉供给了全新的靶点,Caspase宗族为脓毒症致AKI肾脏细胞凋亡3大途径的一起交叉点,理论上Caspase按捺剂阻断细胞凋亡具有较好的临床使用远景,可是,细胞凋亡触及错综杂乱的信号通路网络,脓毒症致AKI细胞凋亡信号通路终究是以哪种信号通路(线粒体通路、逝世受体通路和内质网通路)为首要的凋亡信号传导通路?或许它们仅仅一个愈加杂乱的凋亡信号网络系统中的一部分?因而,未来希望更多的关于脓毒症致AKI细胞凋亡其他途径的研讨,然后为临床干涉脓毒症AKI供给更多的支撑。

[参考文献]

[1] 孟东亮,邢海波,茅尧生,等. 中性粒细胞明胶酶相关脂质运载蛋白对脓毒症继发急性肾损害患者的前期猜测价值[J/CD]. 中华危重症医学杂志:电子版,2015,8(4): 224-229.

[2] Majumdar A. Sepsis-induced acute kidney injury[J]. Indian J Crit Care Med,2010,14(1):14-21.

[3] Langenberg C,Bagshaw SM,May CN,et al. The histopathology of septic acute kidney injury:A systematic review[J]. Crit Care,2008,12(2):R38.

[4] Mervyn Singer MD,Frcp,Clifford S,et al. The third international consensus definitions for sepsis and septic shock(sepsis-3)[J]. JAMA,2016,315(8):801-810.

[5] Gomez H,Ince C,De Backer D,et al. A unified theory of sepsis-induced acute kidney injury:Inflammation, microcirculatory dysfunction,bioenergetics,and the tubular cell adaptation to injury[J]. Shock 2014,4(1):3-11.

[6] Engelmann B,Massberg S. Thrombosis as an intravascular effector of innate immunity[J]. Nat Rev Immunol 2013,13(1):34-45.

[7] Meier J,Henes J,Rosenberger P. Bleeding and coagulopathies in critical care[J]. N Engl J Med,2014,370(22):2152-2153.

[8] Prowle JR,Bellomo R. Sepsis-associated acute kidney injury:Macrohemodynamic and microhemodynamic alterations in the renal circulation[J]. Semin Nephrol,2015,35(1):64-74.

[9] 韩芳,吴爱萍,孙仁华. 脓毒症急性肾损害的前期确诊及生大黄的效果研讨[J]. 我国现代医师,2015,53(16):4-7.

[10] Ayse Kockara,Mansur Kayatas. Renal cell apoptosis and new treatment options in sepsis-induced Acute Kidney Injury[J]. Renal Failure,2013,35(2):291-294

[11] Lerolle N,Nochy D,Guerot E,et al. Histopathology of septic shock induced acute kidney injury:Apoptosis and leukocytic infiltration[J]. Intensive Care Med,2010,36(3):471-478.

[12] Havasi A,Borkan SC. Apoptosis and acute kidney injury[J].Kidney Int,2011,80(1):29-40.

[13] Suh SH,Lee KE,Kim IJ,et al. Alpha-lipoic acid attenuates lipopolysaccharide-induced kidney injury[J]. Clin Exp Nephrol,2015,19(1):82-91.

[14] Lerolle N,Nochy D,Guérot E,et al. Histopathology of septic shock induced renal injury:Apotosis and leukocytic infiltration[J]. Intensive Care Med,2010,36(3):471-478.

[15] Mariano F,Cantaluppi V,Stella M,et al. Circulating plasma factors induce tubular and glomerular alterations in septic burns patients[J]. Crit Care,2008,12(2):R42.

[16] Cantaluppi V,Weber V,Lauritano C,et al. Protective effect of resin adsorption on septic plasma-induced tubular injury[J]. Crit Care,2010,14(1):R4.

[17] Morrell ED,Kellum JA,Pastor-Soler NM,et al. Septic acute kidney injury:Molecular mechanisms and the importance of stratification and targeting therapy[J]. Critical Care,2014,18(5):501-511.

[18] de Araujo Junior RF,Leit?觔o Oliveira AL,de Melo Silveira RF,et al. Telmisartan induces apoptosis and regulates Bcl-2 in human renal cancer cells[J]. Experimental Biology and Medicine,2015,240(1):34-44.

[19] Tania R,Stoyanoff,Juan S,et al. Amelioration of lipopolysaccharide-induced acute kidney injury by erythropoietin:Involvement of mitochondria-regulated apoptosis[J]. Toxicology,2014,13(21):13-21.

[20] 李莉,馬涛,胡文全,等. 线粒体在脓毒症淋巴细胞凋亡中的效果[J]. 中华外科杂志,2010,48(16):1243-1246.

[21] 宣小燕,张爱华,黄松明. 线粒体通透性变换孔与急性肾损害[J]. 中华肾脏病杂志,2015,31(1):69-72.

[22] Muthuraman A,Sood S,Ramesh M,et al. Therapeutic potential of 7,8-dimethoxvcoumarin on cisplatin and ischemia/reperffusion injury-induced acute renal failure in rats[J]. Naunyn Schmiedebergs Arch Pharmacol,2012,385(7):739-748.

[23] Fernandes MP,Leite AC,Araujo FF,el al. The cratylia mollis seed leetin induces membrane permeability transition in isolated rat liver mitoehondria and a eyelosporine A-insensitive permeability transition in trypanosoma cruzi mitochondria[J]. J Eukaryot Microbiol,2014,61(4):381-388.

[24] Scorrano L. Keeping mitochondria in shape:A matter of life and death[J]. Eur J Clin Invest,2013,43(8):886-893.

[25] Wang Z,Havasi A,Gall J,et al. GSK3beta promotes apoptosis after renal ischemic injury[J]. J Am Soc Nephrol,2010,21(2):284-294.

[26] Kim M,Park SW,Kim M,et al. Selective renal overexpression of human heat shock protein 27 reduces renal ischemia-reperfusion injury in mice[J]. Am J Physiol Renal Physiol,2010,299(2):347-358.

[27] Birk AV,Liu S,Soong Y,et al. The mitochondrial targeted compound SS-31 re-energizes ischemic mitochondria by interacting with cardiolipin[J]. J Am Soc Nephrol,2013, 24(8):1250-1261.

[28] Probert L. TNF and its receptors in the CNS:The essential,the desirable and the deleterious effects[J]. Neuroscience,2015,27(8):2-22.

[29] Jiao Liu,Osama Abdel-Razek,Zhiyong Liu. Role of surfactant proteins A and D in sepsis-induced acute kidney injury[J]. Shock,2015,43(1):31-38.

[30] Zang X,Zheng F,Hong HJ,et al. Neutrophil gelatinase-associated lipocalin protects renal tubular epithelial cells in hypoxia-reperfusion by reducing apoptosis[J]. Int Urol Nephrol,2014,46(8):1673-1979.

[31] Mariano F,Cantaluppi V,Stella M,et al. Circulating plasma factors induce tubular and glomerular alterations in septic burns patients[J]. Crit Care,2008,12(2):R42.

[32] Cantaluppi V1,Weber V,Lauritano C,et al. Protective effect of resin adsorption on septic plasma-induced tubular injury[J]. Crit Care,2010,14(1):R4.

[33] Lin Liu,Yijin Song,Zhao M,et al. Protective effects of edaravone,a free radical scavenger,on lipopolysaccharide-induced acute kidney injury in a rat model of sepsis[J].Int Urol Nephrol,2015,47(10):1745-1752.

[34] 葉海燕,马少林. 内质网应激介导脓毒症淋巴细胞凋亡研讨发展[J]. 中华急诊医学杂志,2014,23(3):354-356.

[35] 张敏,严斌. 内质网应激在脓毒症大鼠肾损害中的效果[J]. 中华试验外科杂志,2015,32(4):821-823.

[36] Liu L,LI Y,Hu Z,et al. Small interfering RNA targeting Toll-like reeeptor9 protects mice against polymicrobial septic acute kidney injury[J]. Nephron Exp Nephrol,2012, 122(1-2):51-61.

[37] Tabas I,Ron D. Integrating the mechanisms of apoptosis induced by endoplasmic by endoplasmic reticulum stress[J]. Nat Cell Biol,2011,13(3):184-190.

[38] Esposito V,Grosjean F,Tan J,et al. CHOP deficiency results in elevated lipopolysaccharide-induced inflammation and kidney injury[J]. Am J Physiol Renal Physiol,2013,304(4):440-450.

(收稿日期:2016-09-16)infiltration, renal vascular endothelial dysfunction and renal cell apoptosis. Renal cell apoptosis mechanism, especially renal tubular epithelial cell apoptosis may play a key role in sepsis induced AKI. Therefore, this article is mainly on the development of renal cell apoptosis pathway in sepsis induced AKI. We hope to provide some help for clinical treatment of sepsis.

[Key words] Sepsis; Acute kidney injury; Apoptosis; Mitochondria apoptosis pathway; Death receptor pathway; Endoplasmic reticulum associated death

健康之友©部分网站内容来自网络,如有侵权请联系我们,立即删除!
细胞 凋亡 内质网
你该读读这些:一周精选导览
更多内容...

TOP

More