呼吸机相关性肺损害:削减呼吸机相关性肺损害的新方法

old
中国现代医生
2019年09月21日 08:35

刘龙 李新华 李强

[摘要] 虽然了解ARDS的发病机制及其各种影响患者预后的演化要素,机械通气支撑依然是医治ARDS的根底,可是机械通气自身能够经过多种机制一起加剧或引起肺部危害,统称为呼吸机相关性肺危害(VILI)。跟着对ARDS更深化的了解,VILI在规划肺维护性通气战略进程中现已受到重视,意图是减轻VILI和改进预后。本文旨在论述VILI的病理生理机制,评论NAVA、体外生命支撑、抗细胞因子疗法等新的减轻和医治VILI的办法,并经过一些试验研讨来证明这些观念。

[要害词] 机械通气;呼吸机相关性肺危害;神经调理辅佐通气

[中图分类号] R563.8 [文献标识码] A [文章编号] 1673-9701(2014)04-0157-04

急性呼吸困顿综合征(acute respiratory distress syndrome, ARDS)是指急性发作的低氧性呼吸衰竭,由非心源性肺水肿引起的双侧弥漫性肺泡滋润[1]。超越四十年的深化研讨并没有发现医治ARDS有用的药物存在,机械通气(mechanical ventilation, MV)支撑依然是医治的根底[2],可是机械通气自身能够经过多种机制一起加剧或引起肺部危害,统称为呼吸机相关性肺危害(ventilator-induced lung injury, VILI)[3]。这些机制包含露出于高通胀的跨肺压力(气压伤)、肺泡过度胀大(容积伤)、或重复敞开和封闭肺泡。除了直接的结构损坏,这些机械力能够触发一系列杂乱的炎症介质,使部分和全身性炎症反响传达到非肺器官[4],导致多个体系器官功用障碍,并终究逝世。

跟着对ARDS更深化的了解,VILI在规划肺维护性通气战略进程中现已受到重视,意图是减轻VILI和进步生存率。事实上,只要运用小潮气量(VT)(≤6 mL/kg)通气、满意的呼气末正压(PEEP)、约束气道渠道压≤30 cmH2O能够进步ARDS患者生存率[5]。经过进步对VILI机制的知道并拟定新的通气战略和医治干涉办法,防止和减轻VILI以改进ARDS患者的预后现已取得了相当大的效果。在此,咱们将扼要回忆VILI的病理生理机制,并评论一些新的生理和非生理学的办法,以最大极限地减轻VILI。

1 VILI的病理生理

VILI是指MV引起肺泡过度扩张而发作炎症诱导肺泡通透性添加、肺水肿、肺不张的危害[3]。VILI的首要力学要素是因为高跨肺压区域肺过度胀大引起的肺体积变形超越它自身的容积[6]。肺的静息容积越小,关于一个给定的肺体积的张力改变越大。在机械通气进程中,因为陷落的肺泡扩张力添加,加之肺泡重复的敞开和陷落,因而MV在低肺容积也可能是有害的[7,8]。

VILI是一个动态的进程,研讨发现,在VILI中首要是有害影响对肺泡上皮细胞和毛细血管内皮细胞的危害,其次是炎症介质,肺泡过度充气能够促进细胞的增殖和炎症反响。肺泡细胞在机械力效果下的变形是肺泡细胞膜内分子构象的直接改变,导致下流信使体系激活。MV能够触发一系列杂乱的促炎和抗炎介质,可能会导致肺的危害加剧或加快肺功用的康复[9]。MV诱导的炎症反响以为有两种机制:第一种是直接伤口细胞损坏细胞壁,然后导致细胞因子开释到肺泡腔和全身循环中[10];第二种机制是力的传导。体外研讨标明,大多数肺泡细胞在环状拉伸效果下可发作细胞因子[11]。可是,这些物理效果力的感应机制和其怎么转换成细胞内信号在很大程度上都是不知道的。Slutsky和Tremblay[12]首要提出运用机械通气的ARDS患者可能经过发动和介导全身炎症反响加快多体系器官功用障碍的开展。ARDS的试验研讨和临床试验现已标明,维护性通气战略的运用与血清细胞因子水平的下降[13,14],削减肺外器官功用障碍[15],和下降逝世率[5]有关。

2 减轻VILI的新办法

2.1 神经调理辅佐通气形式减轻VILI

神经调理辅佐通气(neurally adjusted ventilatory assist, NAVA)是经过一个专门规划的鼻胃管记载膈肌电活动(EADI)来操控机械通气,呼吸机上份额系数由临床医生来设置[16]。假如VT低于患者的呼吸需求EADI会天性上调,大于患者的需求则会下调,当辅佐水平满意患者的呼吸需求时,即便上调呼吸机的份额系数,VT也将坚持相对稳定[17-19]。NAVA依照患者的呼吸需求供给同步呼吸辅佐,这可能在添加患者呼吸功用或呼吸肌无力时是特别有用的。在必定程度上,患者的防御机制是有用约束不适宜的肺牵张,NAVA能够经过定制MV计划来改进患者的预后[20,21]。

临床研讨现已证明,NAVA能够防止过度肺通气,高效减轻呼吸肌担负,并能改进患者与呼吸机同步性[16, 22]。在NAVA形式下,当肺通气缺乏时能够反射性地约束VT然后自己调整VT及最大程度的约束VILI,而且这个假设在动物研讨中现已进行了测验[19],证明NAVA与传统低VT肺维护和肺器官功用障碍的计划在肺危害动物中的效果类似[23,24]。

2.2 测定肺压与个体化的呼气末正压通气

有些人以为肺压是VILI的首要决定要素[25]。肺泡内压静态条件下在吸气末和呼气末近似气道压力。因为胸腔压力的丈量是侵入性的,因而常用食管压力(PES)[26]。不相称的机械应力(也就是吸气末高肺压)效果于危害肺是触发机械传导和VILI的一个要害。运用恰当水平的呼气末正压(PEEP)能够减轻不张伤,以防止肺泡在呼气末彻底陷落。Loring及其搭档[27]研讨在ARDS动物模型中不同程度PEEP对胸壁缩短的影响。第一个试验组,在动物胸壁运用缩短弹性粘结剂,稳定的PEEP(LC组);另一组运用相同的缩短剂,但PEEP进步坚持在呼气末肺压(LCP组)的水平。两试验组均选用相同的通气战略1.5 h后生理盐水肺灌洗,用食管气球丈量肺压,在MV中,LC组肺危害、低氧血症、肺水肿程度比LCP对照组更严峻,LC组血液和肺灌洗液炎性细胞因子显着升高,因而,额定PEEP坚持肺压能够减轻胸壁紧缩的有害影响。endprint

ARDS患者的一项随机临床试验,设定PEEP坚持活跃的肺压,食管气球测定(干涉组)与设定PEEP依据氧合(对照组)比较,干涉组在改进呼吸体系力学、氧合、进步生存率上没有显着优势。这项研讨还标明,依据肺压断定一个恰当的PEEP水平是可行的。

2.3 体外气体交流

体外生命支撑(extracorporeal life support, ECLS)技能,比方体外膜肺氧合(extracorporeal membrane oxygenation, ECMO)或体外CO2去除(extracorporeal CO2 removal, ECCO2R)均可为ARDS的患者供给满意的气体交流[28]。因ECLS技能伤口小,生物相容性强,而且运用更简单、更安全,ECLS的设备在曩昔十年中有了很大的改进[29,30]。此外,运用ECLS能够方便运用最具维护性的MV(例如,选用VT<6 mL/kg和更低的气道压力),使VILI的危险尽量降到最低。更底子的是,ECLS支撑的患者可能不需要插管或侵入性的MV[31]。

Terragni和他的搭档[32]评价了当VT<6 mL/kg是否可进步肺维护。VT为6 mL/kg的32例急性呼吸困顿综合征的患者,肺泡内高压从28~30 cm H2O削减到25~28 cm H2O,至少在72 h内运用ECCO2R办理呼吸性酸中毒(pH值≤7.25),肺泡高压为25~28 cm H2O的患者持续承受MV(VT=6 mL/kg)。以ECCO2R组(10例)为规范,二氧化碳分压(均匀50 mm Hg),pH值(均值为7.32),VT从6削减到4 mL/kg,肺泡高压从29下降到25 cm H2O(P <0.01)。此外,在ECCO2R组机械通气72 h后,VT低于6 mL/kg,有形状符号的肺危害和肺细胞因子显着下降(P<0.01)。值得注意的是,患者承受ECCO2R没有相关并发症发作[28, 33]。

2.4 抗细胞因子疗法

MV能够添加肺内炎症介质的水平,运用炎症介质拮抗剂能够减轻VILI[3],这在临床前研讨中许多潜在效果现已断定,在体外和体内大鼠模型进行危害机械通气后,一些炎症介质(包含TNF-α、IL-6和IL-10)水平添加[13, 34]。

ARDS运用MV模型中,生理盐水肺灌洗后在肺泡中促炎性细胞因子TNF-α显着添加[8],Imai和他的搭档[35]研讨用气道抗TNF-α抗体预处理后是否会减轻VILI的程度,灌注低剂量(0.2 mg/kg,6例)和高剂量(1 mg/kg,6例)的多克隆抗TNF-α抗体两个医治组,与血清IgG抗体对照组(n =6)、生理盐水对照组(n=7)比较较。经过4 h的MV,肺灌洗液TNF-α水平显着高于基线。此外,运用抗TNF-α抗体预处理能够改进气体交流和呼吸体系顺应性,削减白细胞滋润,改进病理成果。可是这些试验成果是经过使用VILI动物模型得出的,迄今为止,抗细胞因子医治危重患者的临床试验依旧没有实质性的开展[36,37]。

2.5 热休克反响

体外试验标明,诱导热休克反响防备内毒素介导的细胞凋亡,而在体内它维护动物防止脓毒症、急性呼吸困顿综合征和缺血再灌注危害[38]。

热休克反响的一个可能机制是经过热休克蛋白因子结合,防止其从炎症细胞开释[39]。Ribeiro及其搭档进行的随机试验对大鼠承受热露出或假手术医治机械通气2 h后经过灌洗的细胞因子冲刷后剖析,在促炎细胞因子水平MV假医治较预通气状态下低水平的细胞因子的肺顺应性下降了47%。相反,在假医治组导致了较小的炎性细胞因子的削减(17%)。核因子κB是一个重要的转录因子,许多炎性细胞因子可使其激活,与脓毒症患者的逝世率相关。最近的研讨标明,诱导热休克反响按捺体外培育含有核因子κB的呼吸道上皮细胞[40],在ARDS患者中热休克蛋白和诱导热休克反响有助于减轻或防止VILI[41]。

3 未来的开展方向与定论

40年来依然没有详细有用的ARDS药物医治计划。MV依然是支撑医治的根底,虽然它自身可能导致进一步的肺危害。医治VILI的一个重要的形式改变包含新的疗法,其意图不仅是下降肺内压力或容积,而是防止炎症反响的发动和/或传达(相关效果)的干涉办法,NAVA、体外生命支撑、抗细胞因子疗法代表着VILI辅佐疗法的新方向,以现有的和新的肺维护性通气战略,防止VILI的开展。但在临床前研讨许多减轻VILI和改进预后新的医治办法在随后的人体临床试验没有成功。总归,正在进行的临床前和临床研讨仍在持续,希望能处理发作这一差异的原因,进一步了解MV、肺危害、危重患者之间的联系,而且这些研讨将有助于开发新的办法以改进或减轻VILI的开展。

[参考文献]

[1] Ranieri VM, Rubenfeld GD, Thompson BT, et al. Acute respiratory distress syndrome: the berlin definition[J]. JAMA,2012,307(23):2526-2533.

[2] Fan E, Needham DM, Stewart TE. Ventilatory management of acute lung injury and acute respiratory distress syndrome[J]. JAMA,2005, 294(22):2889-2896.

[3] Tremblay LN, Slutsky AS. Ventilator-induced lung injury: from the bench to the bedside[J]. Intensive Care Med,2006,32(1):24-33.endprint

[4] Tremblay LN, Slutsky AS.Ventilator-induced injury: from barotrauma to biotrauma[J]. Proc Assoc Am Physicians,1998,110(6):482-488.

[5] Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. The Acute Respiratory Distress Syndrome Network[J]. N Engl J Med,2000,342(18):1301-1308.

[6] Chiumello D, Carlesso E, Cadringher P, et al. Lung stress and strain during mechanical ventilation for acute respiratory distress syndrome[J].Am J Respir Crit Care Med,2008,178(4):346-355.

[7] Smith BJ, Grant KA, Bates JH. Linking the development of ventilator-induced injury to mechanical function in the lung[J]. Ann Biomed Eng,2013,41(3):527-536.

[8] Wilson MR, Takata M. Inflammatory mechanisms of ventilator-induced lung injury: A time to stop and think[J]. Anaesthesia,2013,68(2):175-178.

[9] Crosby LM, Waters CM. Epithelial repair mechanisms in the lung[J].Am J Physiol Lung Cell Mol Physiol,2010,298(6):L715-731.

[10] Plotz FB, Slutsky AS, Van Vught AJ, et al. Ventilator-induced lung injury and multiple system organ failure:a critical review of facts and hypotheses[J]. Intensive Care Med,2004,30(10):1865-1872.

[11] Vlahakis NE, Schroeder MA, Limper AH, et al. Stretch induces cytokine release by alveolar epithelial cells in vitro[J]. Am J Physiol,1999,77(1 Pt 1):167-173.

[12] Slutsky AS, Tremblay LN. Multiple system organ failure. Is mechanical ventilation a contributing factor[J]. Am J Respir Crit Care Med,1998,157(6 Pt 1):1721-1725.

[13] Tremblay L, Valenza F, Ribeiro SP, et al. Injurious ventilatory strategies increase cytokines and c-fos m-RNA expression in an isolated rat lung model[J]. J Clin Invest,1997,99(5):944-952.

[14] Villar J, Cabrera NE, Casula M, et al. Mechanical ventilation modulates TLR4 and IRAK-3 in a non-infectious, ventilator-induced lung injury model[J]. Respir Res,2010,11:27.

[15] Ranieri VM, Suter PM, Tortorella C, et al. Effect of mechanical ventilation on inflammatory mediators in patients with acute respiratory distress syndrome:a randomized controlled trial[J]. Jama,1999,282(1):54-61.

[16] Sinderby C, Navalesi P, Beck J, et al. Neural control of mechanical ventilation in respiratory failure[J]. Nat Med,1999,5(12):1433-1436.

[17] Chiew YS, Chase JG, Lambermont B, et al. Effects of Neurally Adjusted Ventilatory Assist (NAVA) levels in non-invasive ventilated patients: titrating NAVA levels with electric diaphragmatic activity and tidal volume matching[J]. Biomed Eng Online,2013,12:61.endprint

[18] Roze H, Repusseau B, Perrier V, et al. Neuro-ventilatory efficiency during weaning from mechanical ventilation using neurally adjusted ventilatory assist[J]. Br J Anaesth,2013,111(6):955-960.

[19] Brander L, Sinderby C, Lecomte F, et al. Neurally adjusted ventilatory assist decreases ventilator-induced lung injury and non-pulmonary organ dysfunction in rabbits with acute lung injury[J]. Intensive Care Med,2009,35(11):1979-1989.

[20] Gama de Abreu M, Belda FJ. Neurally adjusted ventilatory assist: letting the respiratory center take over control of ventilation[J]. Intensive Care Med,2013,39(8):1481-1483.

[21] Mauri T, Bellani G, Grasselli G, et al.Patient-ventilator interaction in ARDS patients with extremely low compliance undergoing ECMO: A novel approach based on diaphragm electrical activity[J]. Intensive Care Med,2013,39(2):282-291.

[22] Piquilloud L, Vignaux L, Bialais E, et al. Neurally adjusted ventilatory assist improves patient-ventilator interaction[J]. Intensive Care Med,2011,37(2):263-271.

[23] Allo JC, Beck JC, Brander L,et al. Influence of neurally adjusted ventilatory assist and positive end-expiratory pressure on breathing pattern in rabbits with acute lung injury[J]. Crit Care Med,2006,34(12):2997-3004.

[24] Moss KS. Neurally adjusted ventilatory assist: insufficient evidence of broad clinical outcomes[J]. Respir Care 2013,58(5):884-885.

[25] Sarge T, Talmor D. Targeting transpulmonary pressure to prevent ventilator induced lung injury[J]. Minerva Anestesiol 2009,75(5):293-299.

[26] Talmor D, Sarge T, ODonnell CR,et al. Esophageal and transpulmonary pressures in acute respiratory failure[J]. Crit Care Med,2006, 34(5):1389-1394.

[27] Loring SH, Pecchiari M, Della Valle P, et al. Maintaining end-expiratory transpulmonary pressure prevents worsening of ventilator-induced lung injury caused by chest wall constriction in surfactant-depleted rats[J]. Crit Care Med,2010, 38(12):2358-2364.

[28] Alves C, Chen JT, Patel N, et al. Extracorporeal membrane oxygenation for refractory acute respiratory distress syndrome in severe malaria[J]. Malar J,2013,12(1):306.

[29] Haushofer M, Abusabha Y, Amerini AL, et al. Oxygenated shunting from right to left: A feasibility study of minimized atrio-atrial extracorporeal membrane oxygenation for mid-term lung assistance in an acute ovine model[J]. Interact Cardiovasc Thorac Surg,2013,17(1):44-48.

[30] Kredel M, Bischof L, Wurmb T, et al. Combination of positioning therapy and venovenous extracorporeal membrane oxygenation in ARDS patients[J]. Perfusion,2013 Aug 28.endprint

[31] Ried M, Bein T, Philipp A, et al. Extracorporeal lung support in trauma patients with severe chest injury and acute lung failure: a 10-year institutional experience[J]. Crit Care,2013,17(3):R110.

[32] Pipeling MR,Fan E.Therapies for refractory hypoxemia in acute respiratory distress syndrome[J]. JAMA,2010,304(22):2521-2527.

[33] Boulate D, Luyt CE, Pozzi M, et al. Acute lung injury after mechanical circulatory support implantation in patients on extracorporeal life support: An unrecognized problem[J]. Eur J Cardiothorac Surg,2013,44(3):544-549.

[34] Herrera MT, Toledo C, Valladares F, et al. Positive end-expiratory pressure modulates local and systemic inflammatory responses in a sepsis-induced lung injury model[J]. Intensive Care Med,2003,29(8):1345-1353.

[35] Imai Y, Kawano T, Iwamoto S, et al.Intratracheal anti-tumor necrosis factor-alpha antibody attenuates ventilator-induced lung injury in rabbits[J]. J Appl Physiol (1985) ,1999,87(2):510-515.

[36] Exley AR, Cohen J, Buurman W, et al. Monoclonal antibody to TNF in severe septic shock[J]. Lancet,1990,335(8700):1275-1277.

[37] Opal SM, Fisher CJ, Jr., Dhainaut JF, et al. Confirmatory interleukin-1 receptor antagonist trial in severe sepsis: a phase III, randomized, double-blind, placebo-controlled, multicenter trial. The Interleukin-1 Receptor Antagonist Sepsis Investigator Group[J]. Crit Care Med,1997,25(7):1115-1124.

[38] Wheeler DS, Wong HR. Heat shock response and acute lung injury[J]. Free Radic Biol Med, 2007,42(1):1-14.

[39] Ribeiro SP, Villar J, Downey GP, et al. Effects of the stress response in septic rats and LPS-stimulated alveolar macrophages: evidence for TNF-alpha posttranslational regulation[J]. Am J Respir Crit Care Med,1996,154(6 Pt 1):1843-1850.

[40] Wong HR, Ryan M, Wispe JR. Stress response decreases NF-kappaB nuclear translocation and increases I-kappaB alpha expression in A549 cells[J]. J Clin Invest ,1997,99(10):2423-2428.

[41] Villar J, Ribeiro SP, Mullen JB, et al. Induction of the heat shock response reduces mortality rate and organ damage in a sepsis-induced acute lung injury model[J]. Crit Care Med,1994,22(6):914-921.

(收稿日期:2013-11-15)endprint

健康之友©部分网站内容来自网络,如有侵权请联系我们,立即删除!
肺泡 损伤 患者
你该读读这些:一周精选导览
更多内容...

TOP

More